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Introduction

The purpose of this memo is to describe the transformation from the AIPS to the
Haystack frame.  The Haystack delay τ between two stations labeled j, k at some epoch t can be
defined in the following way.  At some time tj the signal is incident at station j.  At another time tk
the signal is received at station k. The delay is defined as:

(1)$ j,k(tj) K tk − tj

Note that this definition does not depend at which station the signal is received.

AIPS gives the delay from sets of VLBI stations to the center of the Earth.  We are
interested in the delay between the stations.  Given the delays, and delay rates at some epoch
around two sides of a triangle we can compute the delay around the third side. If we also have  
the delay acceleration we can compute the delay rates.  

Delay Closure

We start by deriving the formula for the delays.  Assume we know the delay (and rates)
between station 1 and 2, and stations 2 and 3.  What is the delay between station 1 and 3?  From
equation (1) above, it is obvious that this is:

(2)$1,3(t1) K t3 − t1 = t3 − t2 + t2 − t1 = $1,2(t1) + $2,3(t2)

Now, by definition (equation 1, above)

(3)t2 = t1 + $1,2(t1)

Taking a Taylor series expansion of the last term on the Right Hand Side (RHS) of (2) we find:

(4)$2,3(t2) = $2,3(t1) +
d$2,3(t1)

dt1
$1,2(t1) + 1

2!

d2
$2,3(t1)
dt1

2 $1,2
2 (t1) + .....

Physically what is happening is that during the transit time the third station moves. Therefore the
delay must be compensated for by the amount the station moves. 

The last term and the higher order terms on the RHS of (4) can be neglected.  One way of
seeing this is noting that for two VLBI stations on the earth, the delay will consist of a constant
part (due to the N-S part of the baseline) plus a harmonic part (the E-W part of the baseline) with
a 24 hour period:



(5)$(t) = $0 + $H sin( 2�t
86400s + &)

with t measured in seconds. The maximum possible delay occurs when the stations are on
opposite sides of the earth.  In this case:

(6)$Max = 2Re
c = 12756km

c = 4.25� 1010ps

From equation (5) it follows that

(7)
dm

$(t)
dtm $m

> $Max �
2�$Max

86400s

m
< 4.25� 1010ps� (3.1� 10−6)m

The left hand side of this (LHS) decreases very rapidly with increasing m, as summarized below:

1.2x10-6 ps3
3.9x10-1 ps2
1.3x105 ps1

MagnitudeDegree
(m)

Ignoring all but the first order term, we have: 

  (8)
$1,3(t) = $1,2(t) + $2,3(t) +

d$2,3(t)
dt $1,2(t)

= $2,3(t) + $1,2(t) � 1+
d$2,3(t)

dt

As a special case of equation (8), suppose that station 3 is colocated with station 1.  Then
the LHS of (8) vanishes, and we have, after a little algebra,

. (9)$1,2(t) = −$2,1(t)/(1 +
d$2,1(t)

dt )

This useful equation relates the delay measured at one end of the baseline to the delay measured at
the other end.   An alternate form of this is:

. (10)(1 +
d$2,1(t)

dt ) = −$2,1(t)/$1,2(t)

Exchanging 1 and 2, and multiply both sides, we find:

. (11)(1 +
d$2,1(t)

dt ) = 1/(1 +
d$1,2(t)

dt )

This equation relates the delay rate at the two ends of the baseline. 



Conversion of Delays and Rates

AIPS gives the delays from the stations to a fictitious station at the center of the earth.
This delay is time tagged at the time the signal reaches the center of the earth.  Let the subscript e
denote this station.  Then the AIPS delays are:

(12)$ j,AIPS(t) = $e,j(t)

Suppose that we make the substitution    in equation (8).  Then we have:2W e

(13)$1,3(t) = $e,3(t) + $1,e(t) � 1 +
d$e,3(t)

dt

Using equation 9 on the second term we have:

(14)$1,3(t) = $e,3(t) − $e,1(t) �
1+

d$e,3(t)
dt

1+
d$e,1(t)

dt

The LHS is what we are after, while the RHS is a function only of the AIPS delays and rates.  The
present version of CL2HF ignores the term in [], or more precisely, sets it to 1.  From equation
(7) above, this is equivalent to an error of  which is not negligible.3� 10−6

The equation for the rates can be found by differentiating equation (14).  We find:

(15)

d$1,3(t)
dt =

d$e,3(t)
dt −

d$e,1(t)
dt �

1

1+
d$e,1(t)

dt

− $e,1(t)
d2

$e,3(t)
dt2 � 1+ d$e,1(t)

dt − d2
$e,1(t)
dt2 � 1+ d$e,3(t)

dt

1 + d$e,1(t)
dt

2

The present version of CL2HF sets the second term to 0.  Although not as large as the first term,
it is still important.

Complications Due to Different Epochs and AIPS Table structure.

There are several things that complicate the above discussion:
1. AIPS divides the delay into two parts.  A model delay and a solution (residual) delay.
2. The epoch of the model delay can be determined prior to the experiment.
3. The epoch of the residual depends on the midpoint of the good data.
4. Neither epoch is the Haystack epoch.

The model delay is given as a 6th order polynomial. For comparison purposes with the Haystack
data it is most convenient to reference everything to the Haystack epoch.  Let the model delay be
denoted by the subscript M, the solution delay by the subscript S, and the total delay by the
subscript T.  Then 



(16)$ j,T(tH) = $ j,M(tH − tM) + $ j,S + d
dt$ j,S� (tH − tS)

In principle there are neglected terms due to the (unmeasured) residual acceleration.  In practice
these terms are small.  These terms would arise, for example, if the station position was in error.
For example, if the station position is in error by L meters than the neglected term has magnitude:

(17)1
2

L
c 2�

tH−tS

86400s

2

For a 10 meter error and a 1 minute interpolation this is about 0.5 ps. 

The total rate at the Haystack epoch can be found by differentiating (16):

(18)d
dt $ j,T(tH) = d

dt $ j,M(tH − tM) + d
dt$ j,S

Since the model delay is given as a polynomial, it is straightforward to evaluate the first term on
the RHS of this.  

The total acceleration, which is necessary to compute the Haystack rates, can be found by
differentiating (18):

(19)d2

dt2 $ j,T(tH) = d2

dt2 $ j,M(tH − tM)

Connection with Dave Gordon’s Conversion

Instead of (14) above, Dave Gordon uses the following equation:

(20)$1,3(t) = $e,3(t − $e,1) − $e,1(t − $e,1)

Taking the Taylor series expansion of this, we find:

(21)$1,3(t) = $e,3(t) − $e,1(t) + d$e,1(t)
dt − d$e,3(t)

dt $e,1(t)

The first term on the RHS is identical to the first term on the RHS of (14).  The second term on
the RHS of (14) can be expanded to give:

− $e,1(t) �
1+ d$e,3(t)

dt

1+ d$e,1(t)
dt

M −$e,1(t) � 1+
d$e,3(t)

dt � 1 −
d$e,1(t)

dt

M −$e,1(t) � 1+
d$e,3(t)

dt −
d$e,1(t)

dt



where the neglected terms are less than 0.1 ps.  This is just the remaining part of (20), thus
proving that Dave Gordon’s formulation and that of this memo are equivalent. 


